BASS workshop 2019 on February 5, 2019 at UF

Project Proposal [not started yet...] AGN/Host properties of IR-pure AGN

Kohei Ichikawa (市川幸平)

FRIS fellow, Tohoku Univ. (from Oct 2018-)

In collaboration with

C. Ricci, T. Kawamuro, and friends

IR counterparts of BAT AGN

☑ 3-500 um IR data from WISE, AKARI, IRAS, and Herschel

(see Ichikawa+17 for more details)

- \supset 601/606 MIR (, NIR) and 402/606 FIR counterparts
- ☑ suitable for the AGN dust/host galaxy studies
- ☑ IR Data is already public. http://iopsdience.iop.org/0004-637X/835/1/74/suppdata/apjaa5154t1_mrt.txt

SED Decomposition in IR bands

☑ SED Decomposition is done using simple AGN/(SB+stellar) templates

(see Mullaney+11 and Ichikawa+19 for more details)

SED Decomposition in IR bands

☑ SED Decomposition is done using simple AGN/(SB+stellar) templates

(see Mullaney+11 and Ichikawa+19 for more details)

- ☑ SED decomposition: 587/606 sources
- ☑ Disentangling AGN/host galaxy (SB+stellar) component
- => AGN IR emission w/o host galaxy contamination

Comparison with high-spatial resolution observations

 \square L_{12um}(KI17) >= L_{12um}(Asmus)

Comparison with high-spatial resolution observations

SED Decomposition works well!

High spatial. resol. obs.

L_{12um} "after" SED decomposition

We found 9"IR-pure AGN" candidates

We found 9(+4) "IR-pure AGN" candidates

Ichikawa+19

- ☑ FIR (up to ~100um) is dominated by AGN torus emission
- ☑ IR-pure AGN shows the SED w/ $f_{22um} > f_{70um} > f_{160um}$

AGN properties of IR pure-AGN

Some QSOs show similar SED. Are IR pure-AGN very bright?

 \Box Lir, AGN, λ_{Edd} vs. M_{BH} of IR pure-AGN

☑ Almost similar distribution w/ the parent sample

Lsf vs. Lir, agn of IR pure-AGN

☑ Their SF luminosity is smaller than the average

We found 9(+4) "IR-pure AGN" candidates

Ichikawa+19

- ☑ FIR (up to ~100um) is dominated by AGN torus emission
- ☑ M_{BH} , $L_{14-150keV}$ distribution is similar with the parent sample (<log M_{BH} >=7.8, <log L_{14-150} >=43.7)
 - Suggesting weaker SF activities in the host
 - good candidates of final stage AGN?

What is the next step?

IR-pure AGN are interesting candidates in the phase where AGN is (still) active, but the host is quenching

- ☑ SF quenching is actually happening in IR pure AGN?
- 1. molecular gas reservoir (gas mass)
- 2. location in SFR vs. M*

- ☑ Do IR-pure AGN have any feedback signatures?
- 1. optical spectral feature

IR-pure AGN contain low molecular gas?

CO (2-1) emission is non-detection for (at least one) IR-pure AGN

- ☑ BASS molecular gas sample could cover most of IR-pure AGN?
- Gas mass In BASS DR2? (Koss+ or Shimizu+?)

Are IR-pure AGN in the main-sequence?

Where are the location of IR-pure AGN in SFR vs M* sequence?

☑ Small SFR/M* would be expected for IR-pure AGN

Are IR-pure AGN in the main-sequence?

Where are the location of IR-pure AGN in SFR vs M* sequence?

☑ Small SFR/M∗ would be expected for IR-pure AGN

Do IR-pure AGN have (ionized) outflow?

Optical spectra give us the (ionized) outflow through [OIII]5007

☑ BASS already covers optical spectra, the outflow feature might be easily checked?

Can we see some AGN luminosity decline?

ALLWISE+NEOWISE covers W1 (3.4um) and W2 in the last 8 yrs

- ☑ Do we see any variabilities for IR-pure AGN?
- **☑** Seems very ambitious, but worth to see...

What we will do

In order to work on the AGN/host properties of pure-IR AGN, we will check

- ✓ SFR vs. M*
- outflow properties

In order to achieve them, we need

- ☑ optical spectra with outflow feature
- ☑ M*, molecular gas mass <= BASS team already has the dataset?</p>

Appendix

Lsf vs. Lir, agn of IR pure-AGN

☑ Their SF luminosity is smaller than the average